123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228 |
- //===-- Optional.h - Simple variant for passing optional values ---*- C++ -*-=//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file provides Optional, a template class modeled in the spirit of
- // OCaml's 'opt' variant. The idea is to strongly type whether or not
- // a value can be optional.
- //
- //===----------------------------------------------------------------------===//
- #ifndef LLVM_ADT_OPTIONAL_H
- #define LLVM_ADT_OPTIONAL_H
- #include "None.h"
- #include "AlignOf.h"
- #include "Compiler.h"
- #include <cassert>
- #include <new>
- #include <utility>
- namespace llvm {
- template<typename T>
- class Optional {
- AlignedCharArrayUnion<T> storage;
- bool hasVal;
- public:
- typedef T value_type;
- Optional(NoneType) : hasVal(false) {}
- explicit Optional() : hasVal(false) {}
- Optional(const T &y) : hasVal(true) {
- new (storage.buffer) T(y);
- }
- Optional(const Optional &O) : hasVal(O.hasVal) {
- if (hasVal)
- new (storage.buffer) T(*O);
- }
- Optional(T &&y) : hasVal(true) {
- new (storage.buffer) T(std::forward<T>(y));
- }
- Optional(Optional<T> &&O) : hasVal(O) {
- if (O) {
- new (storage.buffer) T(std::move(*O));
- O.reset();
- }
- }
- Optional &operator=(T &&y) {
- if (hasVal)
- **this = std::move(y);
- else {
- new (storage.buffer) T(std::move(y));
- hasVal = true;
- }
- return *this;
- }
- Optional &operator=(Optional &&O) {
- if (!O)
- reset();
- else {
- *this = std::move(*O);
- O.reset();
- }
- return *this;
- }
- /// Create a new object by constructing it in place with the given arguments.
- template<typename ...ArgTypes>
- void emplace(ArgTypes &&...Args) {
- reset();
- hasVal = true;
- new (storage.buffer) T(std::forward<ArgTypes>(Args)...);
- }
- static inline Optional create(const T* y) {
- return y ? Optional(*y) : Optional();
- }
- // FIXME: these assignments (& the equivalent const T&/const Optional& ctors)
- // could be made more efficient by passing by value, possibly unifying them
- // with the rvalue versions above - but this could place a different set of
- // requirements (notably: the existence of a default ctor) when implemented
- // in that way. Careful SFINAE to avoid such pitfalls would be required.
- Optional &operator=(const T &y) {
- if (hasVal)
- **this = y;
- else {
- new (storage.buffer) T(y);
- hasVal = true;
- }
- return *this;
- }
- Optional &operator=(const Optional &O) {
- if (!O)
- reset();
- else
- *this = *O;
- return *this;
- }
- void reset() {
- if (hasVal) {
- (**this).~T();
- hasVal = false;
- }
- }
- ~Optional() {
- reset();
- }
- const T* getPointer() const { assert(hasVal); return reinterpret_cast<const T*>(storage.buffer); }
- T* getPointer() { assert(hasVal); return reinterpret_cast<T*>(storage.buffer); }
- const T& getValue() const LLVM_LVALUE_FUNCTION { assert(hasVal); return *getPointer(); }
- T& getValue() LLVM_LVALUE_FUNCTION { assert(hasVal); return *getPointer(); }
- explicit operator bool() const { return hasVal; }
- bool hasValue() const { return hasVal; }
- const T* operator->() const { return getPointer(); }
- T* operator->() { return getPointer(); }
- const T& operator*() const LLVM_LVALUE_FUNCTION { assert(hasVal); return *getPointer(); }
- T& operator*() LLVM_LVALUE_FUNCTION { assert(hasVal); return *getPointer(); }
- template <typename U>
- LLVM_CONSTEXPR T getValueOr(U &&value) const LLVM_LVALUE_FUNCTION {
- return hasValue() ? getValue() : std::forward<U>(value);
- }
- #if LLVM_HAS_RVALUE_REFERENCE_THIS
- T&& getValue() && { assert(hasVal); return std::move(*getPointer()); }
- T&& operator*() && { assert(hasVal); return std::move(*getPointer()); }
- template <typename U>
- T getValueOr(U &&value) && {
- return hasValue() ? std::move(getValue()) : std::forward<U>(value);
- }
- #endif
- };
- template <typename T> struct isPodLike;
- template <typename T> struct isPodLike<Optional<T> > {
- // An Optional<T> is pod-like if T is.
- static const bool value = isPodLike<T>::value;
- };
- /// \brief Poison comparison between two \c Optional objects. Clients needs to
- /// explicitly compare the underlying values and account for empty \c Optional
- /// objects.
- ///
- /// This routine will never be defined. It returns \c void to help diagnose
- /// errors at compile time.
- template<typename T, typename U>
- void operator==(const Optional<T> &X, const Optional<U> &Y);
- template<typename T>
- bool operator==(const Optional<T> &X, NoneType) {
- return !X.hasValue();
- }
- template<typename T>
- bool operator==(NoneType, const Optional<T> &X) {
- return X == None;
- }
- template<typename T>
- bool operator!=(const Optional<T> &X, NoneType) {
- return !(X == None);
- }
- template<typename T>
- bool operator!=(NoneType, const Optional<T> &X) {
- return X != None;
- }
- /// \brief Poison comparison between two \c Optional objects. Clients needs to
- /// explicitly compare the underlying values and account for empty \c Optional
- /// objects.
- ///
- /// This routine will never be defined. It returns \c void to help diagnose
- /// errors at compile time.
- template<typename T, typename U>
- void operator!=(const Optional<T> &X, const Optional<U> &Y);
- /// \brief Poison comparison between two \c Optional objects. Clients needs to
- /// explicitly compare the underlying values and account for empty \c Optional
- /// objects.
- ///
- /// This routine will never be defined. It returns \c void to help diagnose
- /// errors at compile time.
- template<typename T, typename U>
- void operator<(const Optional<T> &X, const Optional<U> &Y);
- /// \brief Poison comparison between two \c Optional objects. Clients needs to
- /// explicitly compare the underlying values and account for empty \c Optional
- /// objects.
- ///
- /// This routine will never be defined. It returns \c void to help diagnose
- /// errors at compile time.
- template<typename T, typename U>
- void operator<=(const Optional<T> &X, const Optional<U> &Y);
- /// \brief Poison comparison between two \c Optional objects. Clients needs to
- /// explicitly compare the underlying values and account for empty \c Optional
- /// objects.
- ///
- /// This routine will never be defined. It returns \c void to help diagnose
- /// errors at compile time.
- template<typename T, typename U>
- void operator>=(const Optional<T> &X, const Optional<U> &Y);
- /// \brief Poison comparison between two \c Optional objects. Clients needs to
- /// explicitly compare the underlying values and account for empty \c Optional
- /// objects.
- ///
- /// This routine will never be defined. It returns \c void to help diagnose
- /// errors at compile time.
- template<typename T, typename U>
- void operator>(const Optional<T> &X, const Optional<U> &Y);
- } // end llvm namespace
- #endif
|